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The acoustic field radiated by a multipole point source positioned near to  the 
surface of a solid sphere is calculated at both low and high frequencies. It is 
shown that the scattered field at  low frequencies is always dipole, but at  high 
frequencies is of the same type as the incident field. The application of the results 
to  the acoustic field radiated by turbulence near a sphere is briefly discussed. 

Introduction 
This paper considers the scattering of an acoustic field by a solid body in a 

fluid of infinite extent. The incident field is that due to simple or multipole point 
sources. High- and low-frequency limits are calculated. 

If the scattering body is of a shape suitable for a co-ordinate system which 
admits separable solutions of the wave equation, the scattered field can, in 
general, be written as an infinite summation of eigenfunctions. It is usually 
possible to express the incident field as a sum over the same eigenfunctions. Thus, 
specifying a suitable boundary condition at  the scattering surface, an exact 
solution can be obtained. However, this infinite summation is often not a parti- 
cularly useful description of the acoustic field. Simpler descriptions showing the 
physical nature of the field can be obtained in some cases of which examples of 
scattering by a sphere are discussed here. 

The low-frequency limit is first calculated using Kirchhoff’s integral over the 
surface pressure. It is easily shown that for any smooth rigid body the scattered 
field is always dipole. The relative strength of the scattered field is calculated 
explicitly for scattering by a sphere of the incident field due to a simple source. 
Results for multipole sources can be obtained immediately from the simple 
source solution by differentiation with respect to the source position variable. 
The dipole form of the scattered field exists irrespective of the properties of the 
incident field. 

At high frequencies this dipole dominance does not occur. The limiting case is 
specular reflexion. The dipole then disappears completely and the plane merely 
reflects the incident field. For bodies with large radius of curvature, that is, for 
sound fields with wavelengths small compared to the dimensions of the body, 
we would again expect that the function of the scattering body was merely 
to reflect the incident field, although with some distortion. A high-frequency 
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approximation obtained by tracing acoustic rays is given in this paper for 
an incident field due to a simple source. Again results for dipole and quadru- 
pole fields are obtained. It is known that at  this limit the scattered field is 
essentially of the same type as the incident field. 

The results are used to compare features of the noise radiated by a turbulent 
boundary layer on a rigid sphere at high and low frequencies. It is shown that the 
parameter MX, where M is the Mach number of the mean flow and Xis a Strouhal 
number, determines which of the limiting cases is relevant. 

The low-frequency limit is also used here to determine the field radiated by a 
dipole physically attached to a submerged spherical body. The sphere oscillates 
under the influence of both fluid and mechanical coupling to the dipole, and itself 
generates a dipole field. The total field is obtained by simple addition and it is 
shown that the resulting radiation is least when the dipole is rigidly attached. 

The series expansion of the total field 
The field due to a simple source near to a rigid fixed sphere is first calculated. 

Separable solutions of the wave equation in spherical co-ordinates ( r ,  8 ,# )  for 
waves travelling outwards at  infinity can be written as the infinite summation 
(with an implied eiWt dependence) 

n=O m=O 

where k = wIc is the wave-number of the field; h,(kr) denotes a spherical Hankel 
function of the first kind (the usual superscript is omitted) and Pg(cos 8) denotes 
an associated Legendre function. The terms a,, are to be determined by the 
boundary condition. 

The acoustic pressure field pi(r) at the point r due to a unit simple source at  rO 
can be expressed in spherical co-ordinates in the same functions as expression 
(1)  (Morse & Feshbach 1953). 

jn(kr0) hn(W (r ' Y O ) ,  

hn(kYO)J.n(W (r < Y O ) ,  

where RO = Ir - r,l, j ,  denotes a spherical Bessel function, B,, = 1 if m = 0 and 
E ,  = 2 if m > 0. The appropriate factor is to be taken as either r > rO or r < rO. 

The boundary condition to be satisfied at  the surface is that the normal velocity 
there vanish. This is equivalent to the condition 

%wqWz = 0, 

where"a is the radius of the sphere. p denotes the total acoustic pressure obtained 
by adding the scattered fieldp,, to the incident source field pi. Ifps is expanded as 
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in (l), the boundary condition can be used to obtain an equation for the acoustic 
pressure p .  

(n - m)! 
p ( r )  = i k z  (2n+ 1)  em ~ cos m(q5 - q5,)PT(cos B)Pg(cos 8,) 

n m (n+m)! 

The dash denotes differentiation with respect to the argument. Modifications of 
this result for source fields due to point multipoles can easily be found. In  Cartesian 
co-ordinates these fields are equivalent t o  differentiating the simple source field 
with respect to the source position variable. General expressions for point 
multipoles in co-ordinates other than Cartesian are cumbersome because of the 
curvature of the co-ordinate system. Here we consider dipoles and longitudinal 
quadrupoles corresponding to slay, and a2/ay& respectively, where y3 corresponds 
to the axis 0 = 0, at two source positions, (yo, 0, 0) and (r,, &r, 0) respectively. 
Direct comparison is thus possible between longitudinal multipolea inclined in the 
radial and circumferential directions. We note that as the boundary condition at 
the sphere is homogeneous the differentiation can be applied directly to the total 
incident and scattered field. 

In spherical co-ordinates, a/ay, can be represented as 

a a . i a  - = cos8 --smB,-- 
aY3 O hcl r a6,' 

Thus, at  the source point (r,, 0, 0)) the required dipole and quadrupole results are 
obtained from 8/8r, and a2/ar;, respectively, of the simple source field. 

At the source point (ro, in, 0 ) ,  the required dipole and quadrupole results are 
obtained from - ( l / r , )  a/aO, and - (l/r;) 82/80; - (l/r,) a/ar,, respectively, of the 
simple source field. The minus sign is included here to keep the same sense of the 
multipole. 

The differentiation to obtain multipole results is to be applied in (2). However, 
the summation in this expression cannot be performed directly. High- and low- 
frequency approximations to the distant pressure field will be calculated. As 
these approximations are made independently of the source position, the dif- 
ferentiation for multipole fields can again be applied directly to the simple source 
result so obtained. 

Low-frequency limit 
The low-frequency approximation is obtained from the Kirchhoff result for the 

field in terms of the integral of its value at  the surface. For a field with a vanishing 
normal derivative at the surface, the total field can be written in the form 
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The point rl lies on the surface of the sphere and 

R2, = 1r-r1I2 = r2+a2-2arcos$, 

where cos $ = cos 8 cos 8, +sin 8 sin 8, cos ($ - #,). The exponential term in (3) 
has a simple form at small values of ka if a far-field approximation is taken (i.e. 
if ka 1 and a < r ) .  Equation (3) can be written in this case 

The pressure at  the surface can be written in the form 

where we have used the relation 

jn (ka)  hA(ka) -jA(ka) hn(ka) = i / (ka )2 .  

The integral in (4) is now performed by noting that 

cos $ = cos 8Pq( cos 8,) + sin 8P: (cos el) cos (4  - $,), 

and using the orthogonality properties of the associated Legendre functions. 
Only one term of the summation gives a non-zero result. The scattered field is 

where cos Po = cos 8 cos 8, + sin 8 sin B0 cos (4  - 4,). 

asymptotic limit of the Hankel function at  small values of the argument 
The total field due to a unit simple source can thus be written, using the 

eikR,, eikr a3 

p(r) = - - ik - - cos $0. 
RO r 2ri 

As the approximations are independent of the source position variable, the dipole 
field pd and the longitudinal quadrupole field pq can be found directly. For radial 
multipoIes at  (ro, 0,O) the total fields are given by the equations 

eikr eikr a3 

I p = ---ih-- case, 
r r 2r; 

eikr &kr a3 

pn = - k2-  cos28- 3ik- - case. 
r r rt 

For compactness, and as these are far-field results, Ro has been replaced by r. 
The corresponding results for a source at ( yo ,  &r 0)) when the dipoles and 
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longitudinal quadrupoles have axes parallel to the surface of the sphere, are given 
by the equations 

eikr eikr a3 

p = --tX--sin8cos$, 
r r 2ri 

eZkr eikr 
p~ = - ~ ~ - C O S ~ - ~ ~ G - - C O S ~ ,  

r r 2r: 

eikr eikr a3 

p = - p -  cos2 0 + $ik - - sin 0 cos $. 
T r r ; :  Q 

The dipole form of the scattered field is clearly seen. The strength of the 
scattered field is a factor O((lcro)-n+2u3/r:) times the incident field, where n is the 
order of the source (n = 1 corresponds to a simple source). For radially inclined 
source multipoles the scattering dipole is always inclined in the same direction as 
the source. However, for sources inclined parallel to the surface of the sphere, the 
scattering dipole is inclined either in the same direction or along the radius 
vector to the source as the source number, n, is either even or odd, respectively. 

We note that the results demonstrate a particular case of Curle’s (1955) 
analysis of the acoustic radiation from hydrodynamic sources near surfaces. 
Turbulence can be characterized as a hydrodynamic source by a distribution of 
quadrupoles. The radiation from these quadrupoles is modified, however, by the 
presence of surfaces: a dipole component is introduced into the total radiated 
field. At the low-frequency limit considered here we see that dipole radiation is 
the dominant feature of the field. 

High-frequency limit 
At high frequencies (ka % 1)  the surface of the sphere can be divided into a 

shadow region and an illuminated region. In  the shadow region the scattered 
field almost exactly cancels the incident field. To the degree of approximation 
considered here the total field in the shadow region is assumed zero: it is, in fact, 
exponentially small (Morse & Feshbach 1953). The horizons limiting this region 
are shown in figure 1 when the source is a t  the point (To,  0, 0). 

Reflexion at  the illuminated surface at  this limit is essentially specular 
reflexion in the tangent plane at the point of reflexion (shown at rl in figure 1). 
The path of the reflected ray R, can thus easily be found: we have only to deter- 
mine the point rl. For a source at  (ro, 0, 0) the total field is independent of the 
co-ordinate 4. The angle of reflexion is found from the equations 

sin$ sin($-O1) sin 
(7) 

YO a R *  
where $ = 8 - 8,. 

We are interested in sources positioned close to the surface. Thus, if ro = a + 8, 
we have 8/a -g 1. Equation (7) can be solved approximately for small angles 0,, 
giving 

8, = (8/a) tan8. 

- -- - 
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The scattered field is equivalent to a source at  the point r2. Thus the total - 

field is defined by the expression 
eikRo eik(Rx+R) 

p(r) = -+ ~ 

R, (R ,+R)  

A phase shift kR( 1 + cos 2@) % 2k8sin 8 tan 8 is thus introduced. 

.FIGURE 1. High-frequency reflexion of field due to a simple source. 

The field radiated by a radially inclined dipole at  the point ro can be found in a 
similar way. The image dipole at the point r2 is inclined at an angle 28, to the 
axis 8 = 0. This dipole can be written as two components, one of strength 
- cos 28, N" - 1 parallel to the source dipole axis, and a perpendicular component 
of strength -sin 28, !z - (28/a) tan 8. The total field can now be written 

eikRo 

p(rl) = ikcos6- ( 1  - - e 2 i k 8 s i n @ W O  ) 
Ro 

6 eikRo 
- 2% tan 8 sin 8 cos q5 - - e 2 i k 8 * l n @ t m  0. 

a Ro 
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The curvature of the scattering body thus introduces a small tangential field 
component perpendicular to the original dipole axis. 

Similarly, a radially inclined longitudinal quadrupole at the point ro leads to an 
image quadrupole at  the point r, inclined to the 0 = 0 axis at an angle 28,. 
Thus, we again obtain a radial quadrupole component of strength 1 and a small 
tangential quadrupole component of strength (28/a) tan 8. 

The fields of dipoles and longitudinal quadrupoles with axes parallel to the 
surface of the sphere can be found in the same way. The image multipole is of 
essentially the same form and strength as the source multipole, but a small 
radial multipole component of strength (28/a) tan 0 is now introduced because 
of the curvature. 

These high-frequency results can also be obtained by assuming that on the 
illuminated part of the sphere the surface pressure field is just twice the incident 
pressure field. In  (3), p(rl) can thus be replaced by 2pi(r1). The resulting integral 
can then be evaluated approximately by the method of stationary phase 
(Davies 1967). 

Dipole source near an oscillating sphere 
We now apply the low-frequency approximation obtained to the field generated 

by a dipole source near to an oscillating solid sphere. As the fields generated are 
linear, the result for an oscillating body can be obtained by adding on the field due 
to the motion of the body alone. This is true if the oscillations of the body are 
caused either by the influence of the source alone or by this influence in conjunc- 
tion with an external force. If the generating source is attached in some way to the 
sphere, the motion of the source due to this attachment will affect the strength of 
the source only to a limited extent. This effect is neglected. 

Fields due to dipoles at  r, in the r,, O,, and $, directions, can be obtained as 
above by differentiating (5) by a/&,, ( l /r ,)  a/@, and ( l / ro  sin So) a/a#, respectively. 

It is convenient to consider the source at  the point (r,, 0,O). The dipole strengths 
can be expressed in rectangular axes (z,, x,, x3) chosen to correspond in the usual 
way to the spherical axes. The dipole strengths A,  corresponding to the r ,  8 and $ 
directions are thus A,, A ,  and A,, respectively. If l$ is the oscillatory force re- 
quired to generate a dipole of strength A,, comparing far-field terms shows that 
Ai = -4 /47r .  It follows, by differentiating (5), that the total far field due to a 
dipole near a rigid sphere with components equivalent to forces & can be written 
in the form 

- & eikr 
p(r) = -- 

47r r 

If the radial velocity of the sphere, assumed small and denoted by U(0,, #,), is 
known, the low-frequency far-field pressure generated by the motion can be 
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found using an analysis similar to the above. As the sphere is rigid, the motion 
can be described by specifying three constant oscillations in three mutually 
perpendicular directions, Choosing these directions as the Cartesian co-ordinates 
already defined and denoting the velocity in the i direction by Q, the radial 
velocity can be written 

U(8,, 4,) = U, sin 8, cos q5, + U, sin 8, sin 4, + U3 cos O0. 

The low-frequency pressure field is easily found to be 

(9) p(r) = - - - - (U, sin 0 cos g5 + U, sin B sin q5 + U3 cos 8), 

where .Ma is written for the virtual mass +7ra3p. The total pressure at  large dis- 
tances is the sum of the pressures defined by (8) and (9). 

The magnitudes of the velocities Q can be found from the equation of motion 
of the sphere. If Gi is the external applied force in the i direction and M is the mass 
of the sphere, the equation of motion is 

wlc Ma eikr 

4n 2 r 

Gi = p(rl) Zi dS(r,) + M &!&/at. Is 
li is the direction cosine of the radius vector to r, to the i rectangular axis. The 
pressure under the integral is the total surface pressure due to the source field 
and the motion of the sphere. The integration is similar to that already per- 
formed. Thus, for example, the oscillating velocity in the 3 direction is given by 
the equation 

We note that the effective mass term ( M  + &Mu) includes the effect of the virtual 
inertia of the sphere. Similar results hold for U, and U,. Using these values of the 
velocity and equations (8) and (9) the total field generated by the system being 

Two limiting cases can be noted. If the sphere has infinite mass the solution 
reduces to the fixed sphere result. If the mass of the sphere is zero (e.g. an air 
bubble in water) the sound generated is equivalent to dipoles of strength Fi + C,. 
It follows immediately from equation (10) that the sound generated by the 
system can be reduced by choosing suitable values of Gi. If the dipole generating 
mechanism is attached to the body the least value of the radiated sound field is 
obtained when the dipole is rigidly attached, i.e. when G, = G, = 0 and G, = - F3. 
It can also be seen that the sound pressure radiated in this case is less than that 
radiated when the sphere is fixed. 
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Summary and conclusions 
High- and low-frequency approximations have been obtained for the acoustic 

fields radiated by simple point sources and point multipoles near the surface of a 
rigid sphere. It is convenient to note here the conditions under which the high- 
frequencyresults are valid. It is necessary that kr ka > 1. Also, the approxima- 
tion breaks down if the point of reflexion rl is at  the horizon. Thus the result 
gives the leading term for points of reflection well within the illuminated region. 
At high frequencies this region contains the major part of the radiation: the 
acoustic field in the shadow region is exponentially small. 

The results can be used to estimate the noise generated by a turbulent boundary 
layer on a rigid sphere. It is of interest to compare features of the sound field 
radiated a t  each limit. The turbulence is basically a quadrupole source. Meecham 
(1965) has suggested that the scattered field in this case is equivalent to an image 
source distribution differing from the actual source distribution by the factor 
S/a, where 6 is the boundary-layer thickness. However, the results obtained 
above demonstrate that an important parameter in the problem is ka. Meecham’s 
use of the result is only justified at high valuesof ka. At low frequencies quadrupole 
radiation is enhanced by a scattered dipole field. The radiation eEciency of the 
turbulence is thus considerably increased. At high frequencies the total radiated 
field is of quadrupole type and the increase in radiation efficiency noted at  low 
frequencies does not exist. 

As previously mentioned, the results demonstrate a particular case of Curle’s 
(1955) analysis. The total radiated field consists of direct radiation from the 
volume of quadrupoles characterizing the turbulence, together with the so- 
called surface sound of essentially dipole form. The relative magnitudes of the 
two forms of radiation depend, in the case considered here, on the parameter ka. 
In  a turbulent boundary layer, typical values of the frequency can be related to a 
Strouhal number X based on a mean flow velocity. Incorporating X into the ratio 
ka shows that the relevant limit is determined by the value of the parameter MX, 
where M is the Mach number of the mean flow. For large values of M S  the domi- 
nant radiation is quadrupole. For small values of MS the surface sound radiated 
pressure is a factor 

times the quadrupole radiation. It follows that at  low Mach numbers, for example, 
in water, where typical Mach numbers are very low indeed, the radiated sound is 
characteristically dipole. 

This research was carried out at Imperial College, London under the Naval Ship 
Systems Command General Hydromechanics Research Program administered 
by the Naval Ship Research and Development Centre under contract N62558- 
4996. I am grateful to Professor J. E. Pfowcs Williams and Dr F. Leppington for 
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